Вычисление произведений Вычисление неопределенных интегралов Вычисление кратных интегралов пределов функций Разложение в степенной ряд Решение уравнений и неравенств Поиск экстремумов функций Определение полиномов интегрирование по частям


Кривую в пространстве можно задать набором её точек или как пересечение двух поверхностей. Команда spacecurve( ) позволяет отобразить пространственную кривую, задаваемую только набором её точек, причём координаты точек задаются как функции одного параметра.

Решение систем линейных уравнений

Для решения систем линейных уравнений созданы мощные матричные методы, которые будут описаны отдельно. Однако функция solve также может с успехом решать системы линейных уравнений. Такое решение в силу простоты записи функции может быть предпочтительным. Для решения система уравнений и перечень неизвестных задаются в виде множеств (см. приведенные ниже примеры).

Рисунок 8.12 дает два примера решения систем из двух линейных уравнений. В первом примере функция solve возвращает решение в виде значений неизвестных х и у, а во втором отказывается это делать

В чем дело? Оказывается, в том, что во втором случае система просто не имеет решения. Импликативная графика пакета расширения plots дает прекрасную возможность проиллюстрировать решение. Так, нетрудно заметить, что в первом случае геометрическая трактовка решения сводится к нахождению точки пересечения двух прямых, отображающих два уравнения. При этом имеется единственное решение, дающее значения х и у.

Рис. 8.12. Примеры решения системы из двух линейных уравнений с графической иллюстрацией

Во втором случае решения и впрямь нет, ибо уравнения задают параллельно расположенные прямые, которые никогда не пересекаются. Рекомендуем читателю самостоятельно проверить и третий случай — бесконечного множества решений. Он имеет место, если оба уравнения описывают одну и ту же зависимость и их графики сливаются в одну прямую.

Решение систем из трех линейных уравнений также имеет наглядную геометрическую интерпретацию — в виде точки, в которой пересекаются три плоскости, каждая из которых описывается функцией двух переменных. Для наглядности желательно представить и линии пересечения плоскостей. Это позволяет сделать функция импликативной трехмерной графики tmplicitplotSd, что и показано на рис. 8.13. Для объединения графиков площадей использована функция display.

Некоторые проблемы с решением систем из трех линейных уравнений иллюстрируют примеры, приведенные на рис. 8.14, В первом примере решения вообще нет. График показывает, в чем дело, — линии пересечения плоскостей идут параллельно и нигде не пересекаются. Во втором примере все три плоскости пересекаются по одной линии.

Рис. 8.13. Пример решения системы из трех линейных уравнений с графической иллюстрацией решения

Рис. 8.14. Графическая иллюстрация особых случаев решения системы из трех линейных уравнений

Следующий пример показывает решение системы из четырех линейных уравнений:

Эта система имеет решение, но его простая графическая иллюстрация уже невозможна.

Случай решения неполной системы уравнений (уравнений — 3, а неизвестных — 4) иллюстрирует следующий пример:

Как видно из приведенных примеров, функция solve неплохо справляется с решением систем линейных уравнений.

Математический анализ функции и построение графиков редактор для работы с графикой
Для параметрической функции используется другая её форма, в которой первый аргумент является трёхэлементным списком, представляющим зависимость трёх координат поверхности в цилиндрической системе координат через два параметра следующие два аргумента определяют диапазон изменения параметров поверхности