Вычисление произведений Вычисление неопределенных интегралов Вычисление кратных интегралов пределов функций Разложение в степенной ряд Решение уравнений и неравенств Поиск экстремумов функций Определение полиномов интегрирование по частям


В сферической системе координат положение точки определяется двумя углами и одним линейным размером. Первый угол theta, как и в цилиндрической системе координат, задаёт угол поворота проекции радиус-вектора точки на плоскость xy. Второй угол phi, который образует радиус-вектор точки с положительным направлением оси z декартовой системы координат

Интегралы с переменными пределами интегрирования

К интересному классу интегралов относятся определенные интегралы с переменными пределами интегрирования. Если обычный определенный интеграл представлен числом (или площадью в геометрической интерпретации), то интегралы с переменными пределами являются функциями этих пределов.

На рис. 8.6 показано два примера задания простых определенных интегралов с переменным верхним пределом (сверху) и обоими пределами интегрирования (снизу).

Рис.8.6. Примеры интегралов с переменными пределами интегрирования

На этом рисунке построены также графики подынтегральной функции (это наклонная прямая) и функции, которую задает интеграл.

Математический анализ функции и построение графиков редактор для работы с графикой
В цилиндрической системе координат положение точки задаётся углом поворота theta проекции её радиус-вектора на плоскость xy относительно положительного направления оси х, длиной r этой проекции и значением координаты z точки. Команда cylinderplot() отображает поверхность, заданную либо в виде явной функции, выражающей зависимость координаты r от двух других theta и z, либо в параметрическом виде, при котором каждая из координат определяется как функция двух параметров.