Вычисление произведений Вычисление неопределенных интегралов Вычисление кратных интегралов пределов функций Разложение в степенной ряд Решение уравнений и неравенств Поиск экстремумов функций Определение полиномов интегрирование по частям


В сферической системе координат положение точки определяется двумя углами и одним линейным размером. Первый угол theta, как и в цилиндрической системе координат, задаёт угол поворота проекции радиус-вектора точки на плоскость xy. Второй угол phi, который образует радиус-вектор точки с положительным направлением оси z декартовой системы координат

Вычисление определенных интегралов

Другой важной операцией является нахождение в аналитической или численной форме определенного интеграла:

Определенный интеграл удобно трактовать как площадь, ограниченную кривой f(x), осью абсцисс и вертикалями с координатами, равными а и b. При этом площадь ниже оси абсцисс считается отрицательной. Таким образом, значение определенного интеграла — это число или вычисляемое выражение. Изменить порядок интегрирования в интеграле . Справочный материал и примеры к выполнению контрольной работы по математике

Для вычисления определенных интегралов используются те же функции int и Int, в которых надо указать пределы интегрирования, например х=а.. b, если интегрируется функция переменной х. Это поясняется приведенными ниже примерами:

 

Как видно из этих примеров, среди значений пределов может быть бесконечность, обозначаемая как infinity.

Математический анализ функции и построение графиков редактор для работы с графикой
В цилиндрической системе координат положение точки задаётся углом поворота theta проекции её радиус-вектора на плоскость xy относительно положительного направления оси х, длиной r этой проекции и значением координаты z точки. Команда cylinderplot() отображает поверхность, заданную либо в виде явной функции, выражающей зависимость координаты r от двух других theta и z, либо в параметрическом виде, при котором каждая из координат определяется как функция двух параметров.