Показательные и логарифмические уравнения Определенные интегралы в физике

Типовой расчет по математике примеры решения задач

Использование интегралов в экономических расчетах

Пример. Определить объем продукции, произведенной рабочим за третий час рабочего дня, если производительность труда характеризуется функцией f( t) = 3/(3t +1) + 4.

Решение. Если непрерывная функция f(t) характеризует производительность труда рабочего в зависимости от времени t, то объем продукции, произведенной рабочим за промежуток времени от t 1 до t 2 будет выражаться формулой

V = .

В нашем случае

V = = ln 10 + 12 - ln 7 - 8 = ln 10/7 + 4.

Пример . Определить запас товаров в магазине, образуемый за три дня, если поступление товаров характеризуется функцией f(t) = 2t + 5.

Решение. Имеем:

V = .

Вычисление определённого интеграла. Формула Ньютона-Лейбница.

 Интеграл с переменным верхним пределом. Значение определённого интеграла не зависит от того, какой буквой обозначена переменная интегрирования:   (чтобы убедиться в этом, достаточно выписать интегральные суммы, они совпадают). В этом разделе переменную интегрирования будем обозначать буквой , а буквой  обозначим верхний предел интегрирования. Будем считать, что верхний предел интеграла может меняться, т.е. что  - переменная, в результате интеграл будет функцией  своего верхнего предела: . Легко доказать, что если  интегрируема, то  непрерывна, но для нас важнее следующая фундаментальная теорема:

 Теорема об интеграле с переменным верхним пределом. Если функция  непрерывна в окрестности точки , то в этой точке функция  дифференцируема, и .

 Другими словами, производная определённого интеграла от непрерывной функции по верхнему пределу равна значению подынтегральной функции в этом пределе.

Док-во. Дадим верхнему пределу  приращение . Тогда

, где  - точка, лежащая между  и  (существование такой точки утверждается теоремой о среднем; цифры над знаком равенства - номер применённого свойства определённого интеграла). . Устремим . При этом  ( - точка, расположенная между  и ). Так как  непрерывна в точке , то . Следовательно, существует , и . Теорема доказана.

Пусть сила роста описывается некоторой непрерывной функцией времени d t = f(t), тогда наращенная сумма находится как S = P ex d t dt , а современная величина платежа P = S ex (- d t dt).

Дифференциальные уравнения Всякая функция, удовлетворяющая данному дифференциальному уравнению, называется его решением, или интегралом. Решить дифференциальное уравнение - это значит найти все его решения. Если для искомой функции y нам удалось получить формулу, дающую все решения данного дифференциального уравнения и только их, то мы говорим, что нашли его общее решение, или общий интеграл. Пример. Найти общее решение уравнения y ¢ = 3x.

Пусть национальный доход Y возрастает со скоростью, пропорциональной его величине: ,

и пусть, кроме того, дефицит в расходах правительства прямо пропорционален доходу Y (при коэффициенте пропорциональности q ). Решить уравнение y ¢¢¢ = cos x. Решить уравнение y ¢¢ - y = 0.

Решение. Характеристическое уравнение имеет вид k 2 - 1 = 0, корни которого k 1 = 1, k 2 = -1 действительны и различны.

Разностные уравнения На практике простейшие разностные уравнения возникают при исследовании например величины банковского вклада. Эта величина является переменной Y x , представляющей сумму, которая накапливается по установленному закону при целочисленных значениях аргумента x . Пусть сумма Y o положена в банк при условии начисления 100 r сложных процентов в год. Пусть начисление процентов производится один раз в год и x обозначает число лет с момента помещения вклада ( x = 0, 1, 2,...). Обозначим величину вклада по истечении x лет через Y x . Обыкновенным разностным уравнением называется уравнение, связывающее значения одного независимого аргумента x , его функции Y x и разностей различных порядков этой функции D Y x , D 2 Y x, D 3 Y x,.... Такое уравнение можно записать в общем виде следующим образом:j ( x , Y x , D Y x , D 2 Y x D 3 Y x, D n Y x ) = 0, (10.1)

Производная функции y = f ( x ) может также обозначаться одним из следующих способов: В физике производную по времени t часто обозначают точкой:

Основные типы ЗЛП: определение оптимального ассортимента продукции, использование мощностей оборудования, задача о назначениях, задача составления кормовой смеси, задача оптимального раскроя, транспортная задача. Методы решения ЗЛП: графический метод, симплекс-метод, методы решения с использованием ЭВМ. Двойственная задача и ее экономическая интерпретация.
Тройной интеграл в декартовых координатах