Скорость коммутации Параллелизм на уровне команд Внутрипроцессорная многопоточность Многопоточность в Pentium Однокристальные мультипроцессоры Мультимедиа-процессоры Ядро обработки графики Мультикомпьютеры Согласованность памяти


Параллельные компьютеры с общей памятью. Вся оперативная память таких компьютеров разделяется несколькими одинаковыми процессорами. Это снимает проблемы предыдущего класса, но добавляет новые - число процессоров, имеющих доступ к общей памяти, по чисто техническим причинам нельзя сделать большим.
Многопоточность в Pentium 4

Разобравшись с теорией многопоточности, рассмотрим практический пример — Pentium 4. Уже на этапе разработки этого процессора инженеры Intel продолжали работу над повышением его быстродействия без внесения изменений в программный интерфейс. Рассматривалось пять простейших способов:

Повышение тактовой частоты.

Размещение на одной микросхеме двух процессоров.

Введение новых функциональных блоков.

Удлинение конвейера.

Использование многопоточности.

Самый очевидный способ повышения быстродействия заключается в том, чтобы повысить тактовую частоту, не меняя другие параметры. Как правило, каждая последующая модель процессора имеет несколько более высокую тактовую частоту, чем предыдущая. К сожалению, при прямолинейном повышении тактовой частоты разработчики сталкиваются с двумя проблемами: увеличением энергопотребления (что актуально для портативных компьютеров и других вычислительных устройств, работающих на аккумуляторах) и перегревом (что требует создания более эффективных теплоотводов).

Второй способ — размещение на микросхеме двух процессоров — сравнительно прост, но он сопряжен с удвоением площади, занимаемой микросхемой. Если каждый процессор снабжается собственной кэш-памятью, количество микросхем на пластине уменьшается вдвое, но это также означает удвоение затрат на производство. Если для обоих процессоров предусматривается общая кэш-память, значительного увеличения занимаемой площади удается избежать, однако в этом случае возникает другая проблема — объем кэш-памяти в пересчете на каждый процессор уменьшается вдвое, а это неизбежно сказывается на производительности. Кроме того, если профессиональные серверные приложения способны полностью задействовать ресурсы нескольких процессоров, то в обычных настольных программах внутренний параллелизм развит в значительно меньшей степени.

Введение новых функциональных блоков также не представляет сложности, но здесь важно соблюсти баланс. Какой смысл в десятке блоков АЛУ, если микросхема не может выдавать команды на конвейер с такой скоростью, которая позволяет загрузить все эти блоки?

Конвейер с увеличенным числом ступеней, способный разделять задачи на более мелкие сегменты и обрабатывать их за короткие периоды времени, с одной стороны, повышает производительность, с другой, усиливает негативные последствия неверного прогнозирования переходов, кэш-промахов, прерываний и других событий, нарушающих нормальный ход обработки команд в процессоре. Кроме того, чтобы полностью реализовать возможности расширенного конвейера, необходимо повысить тактовую частоту, а это, как мы знаем, приводит к повышенным энергопотреблению и теплоотдаче.


Компьютер CRAY T3D - это массивно-параллельный компьютер с распределенной памятью, объединяющий от 32 до 2048 процессоров. Распределенность памяти означает то, что каждый процессор имеет непосредственный доступ только к своей локальной памяти, а доступ к данным, расположенным в памяти других процессоров, выполняется другими, более сложными способами.
Параллельные компьютерные архитектуры Adobe Photoshop редактор для работы с графикой