Кэш-память второго уровня Ассоциативная кэш-память Прогнозирование ветвлений Примеры уровня микроархитектуры подсистемы памяти Блок распределения и подмены процессор UltraSPARC Сравнение процессоров


IDE - так обозначается типа диска, который использует интерфейс ATA. IDE - не дорогая электроника, которая использует ATA для подключения c помощью параллельного шлейфа, и создана для подключения устройств внутри компьютера

Функционирование памяти

Наша машина может взаимодействовать с памятью двумя способами: через порт с пословной адресацией (32-разрядный) и через порт с побайтовой адресацией (8-разрядный). Порт с пословной адресацией управляется двумя регистрами: MAR (Memory Address Register — адресный регистр памяти) и MDR (Memory Data Register — информационный регистр памяти), которые показаны на рис. 4.1. Порт с побайтовой адресацией управляется регистром PC, который записывает 1 байт в 8 младших битов регистра MBR (Memory Buffer Register — буферный регистр памяти). Этот порт может считывать данные из памяти, но не может записывать их в память.

Каждый из этих регистров, а также все остальные регистры, изображенные на рис. 4.1, запускаются одним из сигналов управления. Белая стрелка под регистром указывает на сигнал управления, который разрешает передавать выходной сигнал регистра на шину В. Регистр MAR не связан с шиной В, поэтому у него нет разрешающего сигнала управления. У регистра Н этого сигнала тоже нет, так как он является единственным возможным левым входом АЛУ и поэтому всегда разрешен.

Черная стрелка под регистром указывает на сигнал управления, который записывает (то есть загружает) регистр с шины С. Поскольку регистр MBR не может загружаться с шины С, у него нет записывающего сигнала управления (но зато есть два сигнала разрешения, о которых речь пойдет далее). Чтобы инициировать процесс считывания из памяти или записи в память, нужно загрузить соответствующие регистры памяти, а затем передать памяти сигнал чтения или записи (он не показан на рис. 4.1).

Регистр MAR содержит адреса слое, таким образом, значения 0, 1, 2 и т. д. указывают на последовательные слова. Регистр PC содержит адреса байтов, таким образом, значения 0, 1, 2 и т. д. указывают на последовательные байты. Если значение 2 поместить в регистр PC и начать процесс чтения, то из памяти считается байт 2, который затем будет записан в 8 младших битов регистра MBR. Если значение 2 поместить в регистр MAR и начать процесс чтения, то из памяти считаются байты с 8-го по 11-й (то есть слово 2), которые затем будут записаны в регистр MDR.

Для чего потребовалось два регистра с разной адресацией? Дело в том, что регистры MAR и PC требуются для обращения к двум разным областям памяти, а зачем это нужно, станет ясно чуть позже. А пока достаточно сказать, что регистры MAR и MDR используются для чтения и записи слов данных на уровне архитектуры команд, а регистры PC и MBR — для считывания программы уровня архитектуры команд, которая состоит из потока байтов. Во всех остальных регистрах, содержащих адреса, применяется принцип пословной адресации, как и в MAR.

В действительности существует только одна память с байтовой адресацией. Как же регистр MAR обращается к словам, если память состоит из байтов? Когда значение регистра MAR помещается на адресную шину, 32 бита этого значения не попадают точно на 32 адресные линии (с 0 по 31). Вместо этого бит 0 соединяется с адресной линией 2, бит один — с адресной линией 3 и т. д. Два старших бита не учитываются, поскольку они нужны только для адресов свыше 232, а такие адреса недопустимы в нашей машине на 4 Гбайт. Когда значение MAR равно 1,

Рис. 4.3. Распределение битов регистра MAR в адресной шине

на шину помещается адрес 4; когда значение MAR равно 2, на шину помещается адрес 8 и т. д. Распределение битов регистра MAR по адресным линиям иллюстрирует рис. 4.3.

Как уже отмечалось, данные, считанные из памяти через 8-разрядный порт, сохраняются в 8-разрядном регистре MBR. Этот регистр может быть скопирован на шину В двумя способами: со знаком и без знака. Когда требуется значение без знака, 32-разрядное слово, помещаемое на шину В, содержит значение MBR в младших 8 битах и нули в остальных 24 битах. Значения без знака нужны для индексирования таблиц или получения целого 16-разрядного числа из двух последовательных байтов (без знака) в потоке команд. Другой способ превращения 8-разрядного регистра MBR в 32-разрядное слово — считать его значением со знаком от -128 до +127 включительно и использовать это значение для порождения 32-разрядного слова с тем же самым численным значением. Это преобразование делается путем дублирования знакового (самого левого) бита регистра MBR в верхние 24 битовые позиции шины В. Такой процесс называется расширением по знаку, или знаковым расширением. Если выбран данный параметр, то либо все старшие 24 бита примут значение О, либо все они примут значение 1 в зависимости от того, каков самый левый бит регистра MBR: 0 или 1.

В какое именно 32-разрядное значение (со знаком или без знака) превратится 8-разрядное значение регистра MBR, определяется тем, какой из двух сигналов управления (две белые стрелки под регистром MBR на рис. 4.1) установлен. Прямоугольник, обозначенный на рисунке пунктиром, показывает способность 8-разрядного регистра MBR действовать в качестве источника 32-разрядных слов для шины В.

При покупке жесткого диска вам сперва необходимо определиться какой интерфейс будет у вашего диска. Может быть это будет IDE диск? А как на счет SCSI, IEEE 1394, USB? Интерфейсы различаются по скорости, цене, длине кабеля, гибкости и по многим другим факторам. Из чего следует, что было бы разумно дать описание интерфейсам жестких дисков
Уровень микроархитектуры Adobe Photoshop редактор для работы с графикой