Дифференциальное и интегральное исчисление

Дифференциальное и интегральное исчисление функции одной переменной

Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций.

Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.

Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение D y ее представимо в виде
D y = f'(x)D x +a (D x) D x,
где первое слагаемое линейно относительно D x, а второе является в точке D x = 0 бесконечно малой функцией более высокого порядка, чем D x. Если f'(x) 0, то первое слагаемое представляет собой главную часть приращения D y. Эта главная часть приращения является линейной функцией аргумента D x и называется дифференциалом функции y = f(x). Если f'(x) = 0, то дифференциал функции по определению считается равным нулю. Предел функции двух переменных Примеры вычисления интегралов

Определение 5 (дифференциал). Дифференциалом функции y = f(x) называется главная линейная относительно D x часть приращения D y, равная произведению производной на приращение независимой переменной

dy = f'(x)D x.

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = D x. Поэтому формулу для дифференциала принято записывать в следующем виде:
dy = f'(x)dx. (4)

Формула Тейлора для ФНП Курсовая на вычисление интеграла

Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M(x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол f с положительным направлением оси OX, то есть f'(x) = tg f. Из прямоугольного треугольника MKN

KN = MNtgf = D xtg f = f'(x)D x,
то есть dy = KN.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение D x.

Отметим основные свойства дифференциала, которые аналогичны свойствам производной.

  1. d c = 0;
  2. d(c u(x)) = c d u(x);
  3. d(u(x) ± v(x)) = d u(x) ± d v(x);
  4. d(u(x) v(x)) = v(x) d u(x) + u(x)d v(x);
  5. d(u(x) / v(x)) = (v(x) d u(x) - u(x) d v(x)) / v2(x).
Укажем еще на одно свойство, которым обладает дифференциал, но не обладает производная. Рассмотрим функцию y = f(u), где u = f (x), то есть рассмотрим сложную функцию y = f(f(x)). Если каждая из функций f и f являются дифференцируемыми, то производная сложной функции согласно теореме ( 3) равна y' = f'(u)· u'. Тогда дифференциал функции
dy = f'(x)dx = f'(u)u'dx = f'(u)du,
так как u'dx = du. То есть
dy = f'(u)du. (5)
Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от x рассматривать функцию от переменной u. Это свойство дифференциала получило название инвариантности формы первого дифференциала.

Замечание. Отметим, что в формуле ( 4) dx = D x, а в формуле ( 5) du яляется лишь линейной частью приращения функции u.

 

В курсе рассматривается геометрический смысл производной, даётся определение касательной. Рассматриваются вопросы дифференцируемости функции, вычисляются производные сложной функции, обратной функции, основных элементарных функций.
Математический анализ